11.2 Selection Sort¶
Selection sort (selection sort) works very simply: it opens a loop, and in each round, selects the smallest element from the unsorted interval and places it at the end of the sorted interval.
Assume the array has length \(n\). The algorithm flow of selection sort is shown in Figure 11-2.
- Initially, all elements are unsorted, i.e., the unsorted (index) interval is \([0, n-1]\).
- Select the smallest element in the interval \([0, n-1]\) and swap it with the element at index \(0\). After completion, the first element of the array is sorted.
- Select the smallest element in the interval \([1, n-1]\) and swap it with the element at index \(1\). After completion, the first 2 elements of the array are sorted.
- And so on. After \(n - 1\) rounds of selection and swapping, the first \(n - 1\) elements of the array are sorted.
- The only remaining element must be the largest element, requiring no sorting, so the array sorting is complete.
Figure 11-2 Selection sort steps
In the code, we use \(k\) to record the smallest element within the unsorted interval:
selection_sort.py
def selection_sort(nums: list[int]):
"""Selection sort"""
n = len(nums)
# Outer loop: unsorted interval is [i, n-1]
for i in range(n - 1):
# Inner loop: find the smallest element within the unsorted interval
k = i
for j in range(i + 1, n):
if nums[j] < nums[k]:
k = j # Record the index of the smallest element
# Swap the smallest element with the first element of the unsorted interval
nums[i], nums[k] = nums[k], nums[i]
selection_sort.cpp
/* Selection sort */
void selectionSort(vector<int> &nums) {
int n = nums.size();
// Outer loop: unsorted interval is [i, n-1]
for (int i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // Record the index of the smallest element
}
// Swap the smallest element with the first element of the unsorted interval
swap(nums[i], nums[k]);
}
}
selection_sort.java
/* Selection sort */
void selectionSort(int[] nums) {
int n = nums.length;
// Outer loop: unsorted interval is [i, n-1]
for (int i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // Record the index of the smallest element
}
// Swap the smallest element with the first element of the unsorted interval
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.cs
/* Selection sort */
void SelectionSort(int[] nums) {
int n = nums.Length;
// Outer loop: unsorted interval is [i, n-1]
for (int i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // Record the index of the smallest element
}
// Swap the smallest element with the first element of the unsorted interval
(nums[k], nums[i]) = (nums[i], nums[k]);
}
}
selection_sort.go
/* Selection sort */
func selectionSort(nums []int) {
n := len(nums)
// Outer loop: unsorted interval is [i, n-1]
for i := 0; i < n-1; i++ {
// Inner loop: find the smallest element within the unsorted interval
k := i
for j := i + 1; j < n; j++ {
if nums[j] < nums[k] {
// Record the index of the smallest element
k = j
}
}
// Swap the smallest element with the first element of the unsorted interval
nums[i], nums[k] = nums[k], nums[i]
}
}
selection_sort.swift
/* Selection sort */
func selectionSort(nums: inout [Int]) {
// Outer loop: unsorted interval is [i, n-1]
for i in nums.indices.dropLast() {
// Inner loop: find the smallest element within the unsorted interval
var k = i
for j in nums.indices.dropFirst(i + 1) {
if nums[j] < nums[k] {
k = j // Record the index of the smallest element
}
}
// Swap the smallest element with the first element of the unsorted interval
nums.swapAt(i, k)
}
}
selection_sort.js
/* Selection sort */
function selectionSort(nums) {
let n = nums.length;
// Outer loop: unsorted interval is [i, n-1]
for (let i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
let k = i;
for (let j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) {
k = j; // Record the index of the smallest element
}
}
// Swap the smallest element with the first element of the unsorted interval
[nums[i], nums[k]] = [nums[k], nums[i]];
}
}
selection_sort.ts
/* Selection sort */
function selectionSort(nums: number[]): void {
let n = nums.length;
// Outer loop: unsorted interval is [i, n-1]
for (let i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
let k = i;
for (let j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) {
k = j; // Record the index of the smallest element
}
}
// Swap the smallest element with the first element of the unsorted interval
[nums[i], nums[k]] = [nums[k], nums[i]];
}
}
selection_sort.dart
/* Selection sort */
void selectionSort(List<int> nums) {
int n = nums.length;
// Outer loop: unsorted interval is [i, n-1]
for (int i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k]) k = j; // Record the index of the smallest element
}
// Swap the smallest element with the first element of the unsorted interval
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.rs
/* Selection sort */
fn selection_sort(nums: &mut [i32]) {
if nums.is_empty() {
return;
}
let n = nums.len();
// Outer loop: unsorted interval is [i, n-1]
for i in 0..n - 1 {
// Inner loop: find the smallest element within the unsorted interval
let mut k = i;
for j in i + 1..n {
if nums[j] < nums[k] {
k = j; // Record the index of the smallest element
}
}
// Swap the smallest element with the first element of the unsorted interval
nums.swap(i, k);
}
}
selection_sort.c
/* Selection sort */
void selectionSort(int nums[], int n) {
// Outer loop: unsorted interval is [i, n-1]
for (int i = 0; i < n - 1; i++) {
// Inner loop: find the smallest element within the unsorted interval
int k = i;
for (int j = i + 1; j < n; j++) {
if (nums[j] < nums[k])
k = j; // Record the index of the smallest element
}
// Swap the smallest element with the first element of the unsorted interval
int temp = nums[i];
nums[i] = nums[k];
nums[k] = temp;
}
}
selection_sort.kt
/* Selection sort */
fun selectionSort(nums: IntArray) {
val n = nums.size
// Outer loop: unsorted interval is [i, n-1]
for (i in 0..<n - 1) {
var k = i
// Inner loop: find the smallest element within the unsorted interval
for (j in i + 1..<n) {
if (nums[j] < nums[k])
k = j // Record the index of the smallest element
}
// Swap the smallest element with the first element of the unsorted interval
val temp = nums[i]
nums[i] = nums[k]
nums[k] = temp
}
}
selection_sort.rb
### Selection sort ###
def selection_sort(nums)
n = nums.length
# Outer loop: unsorted interval is [i, n-1]
for i in 0...(n - 1)
# Inner loop: find the smallest element within the unsorted interval
k = i
for j in (i + 1)...n
if nums[j] < nums[k]
k = j # Record the index of the smallest element
end
end
# Swap the smallest element with the first element of the unsorted interval
nums[i], nums[k] = nums[k], nums[i]
end
end
11.2.1 Algorithm Characteristics¶
- Time complexity of \(O(n^2)\), non-adaptive sorting: The outer loop has \(n - 1\) rounds in total. The length of the unsorted interval in the first round is \(n\), and the length of the unsorted interval in the last round is \(2\). That is, each round of the outer loop contains \(n\), \(n - 1\), \(\dots\), \(3\), \(2\) inner loop iterations, summing to \(\frac{(n - 1)(n + 2)}{2}\).
- Space complexity of \(O(1)\), in-place sorting: Pointers \(i\) and \(j\) use a constant amount of extra space.
- Non-stable sorting: As shown in Figure 11-3, element
nums[i]may be swapped to the right of an element equal to it, causing a change in their relative order.
Figure 11-3 Selection sort non-stability example











